

Trecho: RUA HALIA POPIA

Sub Trecho:

Data: set/23

ISC: 10,00% Adotado

Memória Cálculo Pavimento

Metodologia

Para o dimensionamento do pavimento em questão adotou-se o Método de Projeto de Pavimentos Flexíveis de autoria do Engenheiro Murillo Lopes de Souza, esta metodologia está em conformidade com o Manual de Pavimentação do DNIT (Brasil, 2006). O método é baseado em dados empíricos que se fundamentam na capacidade de suporte do subleito, traduzida pelos ensaios de ISC dos seus materiais constituintes e pelo tráfego em termos de número equivalente de operações de um determinado eixo padrão, que é fixado em 8,2 t. As diversas camadas que irão constituir o pavimento são dimensionadas de forma a proteger o subleito e resistirem à atuação das cargas dinâmicas causadas pelo tráfego.

a) Tráfego Muito Leve

N típico: 1,00E+02

Tráfego característico de ruas essencialmente residenciais, para as quais não é previsto o tráfego regular de ônibus e a passagem ocasional de caminhões ou ônibus superior a 03 por dia na faixa de tráfego mais solicitada, caracterizado por um número "N" típico de 10² solicitações do eixo simples padrão (80 KN) para o período de projeto de 10 anos.

b) Tráfego Leve:

N típico: 1,00E+05

Tráfego característico de ruas essencialmente residenciais, para as quais não é previsto o tráfego regular de ônibus, podendo existir, ocasionalmente a passagem de caminhões ou ônibus em número não superior a 50 por dia na faixa de tráfego mais solicitada, caracterizado por um número "N" típico de 10^5 solicitações do eixo simples padrão (80 KN) para o período de projeto de 10 anos.

c) Tráfego Médio:

N típico: **5,00E+05**

Tráfego característico de ruas ou avenidas para as quais é prevista a passagem de ônibus e caminhões em número de 50 a 400 por dia na faixa de tráfego mais solicitada, caracterizado por um número "N" típico de 5x10^5 solicitações do eixo simples padrão (80 KN) para o período de projeto de 10 anos.

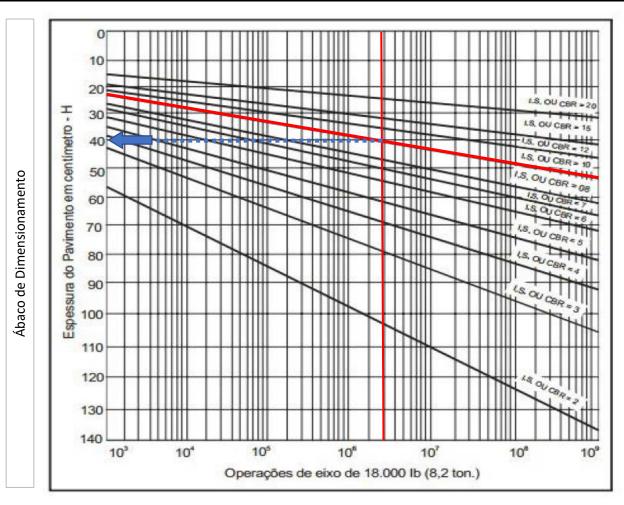
d) Tráfego Pesado:

N típico: 2,00E+06 (adotado)

Tráfego característico de ruas ou avenidas para as quais é prevista a passagem de caminhões ou ônibus em número de 400 a 1000 por dia, por faixa de tráfego, caracterizado por número "N" típico de 2x10^6 solicitações do eixo simples padrão (80KN) para o período de projeto de 10 anos a 12 anos.

DIMENSIONAMENTO

Coeficiente de equivalência estrutural					
Componentes do pavimento	k				
Concreto betuminoso usinado a quente	2,0				
Pré-misturado a quente	1,7				
Pré-misturado a frio	1,4				
Macadame betuminoso de penetração	1,2				
Camadas granulares	1,0				
Rcs, 7 dias, superior a 45 kgf/cm2	1,7				


Rcs, 7 dias, entre a 45 e 28 kgf/cm2

Rcs, 7 dias, entre 28 e 21 kgf/cm2

N	Espessura Mínima de revestimento betuminoso
N<=10^6	Tratamento superficial betuminoso
10^6 <n <="5*10^6</td"><td>Concreto Asfáltico com 4cm de C.A.U.Q. ou 5cm de outro revestimento.</td></n>	Concreto Asfáltico com 4cm de C.A.U.Q. ou 5cm de outro revestimento.
5x10^6 <n <="10^7</td"><td>Concreto Asfáltico com 7,5cm de espessura</td></n>	Concreto Asfáltico com 7,5cm de espessura
10^7 < N <=5 x 10^7	Concreto Asfáltico com 10cm de espessura
N > 10^7	Concreto Asfáltico com 12,5 cm de espessura

1,4

1,2

Para o dimensionamento das espessuras e camadas dos pavimentos o Método do DNER estabelece as seguintes inequações:

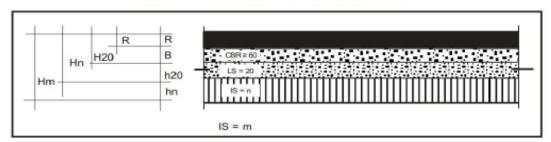
(1) R * KR + B * KB ≥ H20

(2) $R * KR + B * KB + h20 * Ks \ge Hn$

(3) $R * KR + B * KB + h20 * Ks + hn * KRef \ge Hm$

Onde:

R e KR: espessura e coeficiente de equivalência estrutural do revestimento (cm);


B e KB : espessura e coeficiente de equivalência estrutural da base (cm);

H20: espessura de material granular padrão necessária à proteção da sub-base;

H20 e KS : espessura e coeficiente de equivalência estrutural da sub-base (cm);

Hn : espessura de material granular padrão necessária à proteção do reforço;

hn e KRef : espessura e coeficiente de equivalência estrutural do reforço (cm); Hm : espessura de material granular padrão necessária à proteção do subleito.

Fonte: DNIT. Manual de Pavimentação (1996)

<u>Dimensionamento do Pavimento</u>

	Espessura calc.	Espessura adotada	Material	Coef. K	Observ.
R:	5,00 cm	5,00 cm	C.B.U.Q.	2,0	revestimento
B:	10,00 cm	10,00 cm	brita graduada	1,0	base
SB:	20,00 cm	20,00 cm	Macadame seco	1,0	sub-base
HN:	0,00 cm	0,00 cm	reforço sub-leito	1,0	não se aplica
	35,00 cm	35,00 cm			

Espessura total de acordo com o ábaco: 40,00 cm

Eng. Matheus G Lauriano Leme CREA PR 90211D